Some results on incidence coloring, star arboricity and domination number
نویسندگان
چکیده
Two inequalities are established connecting the graph invariants of incidence chromatic number, star arboricity and domination number. Using these, upper and lower bounds are deduced for the incidence chromatic number of a graph and further reductions are made to the upper bound for a planar graph. It is shown that cubic graphs with orders not divisible by four are not 4-incidence colorable. Sharp upper bounds on the incidence chromatic numbers are determined for Cartesian products of graphs, and for joins and unions of graphs.
منابع مشابه
On incidence coloring and star arboricity of graphs
In this note we show that the concept of incidence coloring introduced in [BM] is a special case of directed star arboricity, introduced in [AA]. A conjecture in [BM] concerning asmyptotics of the incidence coloring number is solved in the negative following an example in [AA]. We generalize Theorem 2.1 of [AMR] concerning the star arboricity of graphs to the directed case by a slight modificat...
متن کاملIncidence dominating numbers of graphs
In this paper, the concept of incidence domination number of graphs is introduced and the incidence dominating set and the incidence domination number of some particular graphs such as paths, cycles, wheels, complete graphs and stars are studied.
متن کاملThe incidence game chromatic number of (a, d)-decomposable graphs
The incidence coloring game has been introduced in [S.D. Andres, The incidence game chromatic number, Discrete Appl. Math. 157 (2009), 1980– 1987] as a variation of the ordinary coloring game. The incidence game chromatic number ιg(G) of a graph G is the minimum number of colors for which Alice has a winning strategy when playing the incidence coloring game on G. In [C. Charpentier and É. Sopen...
متن کاملOn the star arboricity of hypercubes
A hypercube Qn is a graph in which the vertices are all binary vectors of length n, and two vertices are adjacent if and only if their components differ in exactly one place. A galaxy or a star forest is a union of vertex disjoint stars. The star arboricity of a graph G, sa(G), is the minimum number of galaxies which partition the edge set of G. In this paper among other results, we determine t...
متن کاملIncidence Coloring Game and Arboricity of Graphs
An incidence of a graph G is a pair (v, e) where v is a vertex of G and e an edge incident to v. Two incidences (v, e) and (w, f) are adjacent whenever v = w, or e = f , or vw = e or f . The incidence coloring game [S.D. Andres, The incidence game chromatic number, Discrete Appl. Math. 157 (2009), 1980–1987] is a variation of the ordinary coloring game where the two players, Alice and Bob, alte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Australasian J. Combinatorics
دوره 54 شماره
صفحات -
تاریخ انتشار 2012